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1. Introduction

Topological D-branes are important objects to study from both the physical and the mathe-

matical point of view. Physically, they provide a simplified model for analyzing the bound-

ary conditions in the full-fledged string theory. Frequently, they are simple enough to admit

exact analysis and yet have rich enough structure to exhibit many common characteristics

like their more mysterious siblings in superstring theory. A notable recent example where

topological D-branes play a prominent role is a large-N duality proposed by Vafa [11].

Mathematically, a major motivation to studying topological D-branes comes from the

need to understand mirror symmetry. An N = 2 sigma model on a Calabi-Yau manifold X

admits two inequivalent topological twistings. The resulting topological field theories are

called the A-model and the B-model [12], and the D-branes in them are called topological

A-branes and B-branes accordingly. On physical grounds, mirror symmetry exchanges the

A-model on X with the B-model on its mirror X̂ , and therefore must exchange the sets of

A-branes and B-branes. One promising proposal to understand this mirror phenomenon

in mathematical terms is the Homological Mirror Symmetry (HMS) conjecture [7], which

interprets mirror symmetry as the equivalence of two triangulated categories: the bounded

derived category of coherent sheaves Db(X) on the one hand, and the derived Fukaya

category DF (X̂) on the other hand. It was later argued by Douglas [2] (see also [1])

that the derived category Db(X) corresponds to the category of topological B-branes.

It is therefore tempting to regard the HMS conjecture as a mathematical re-phrasing of

the physical statement that mirror symmetry exchanges A-branes and B-branes. One

would then naively expect that the category of A-branes is the same as the derived Fukaya

category, whose objects are Z-graded Lagrangian submanifolds carrying flat vector bundles.

In fact, it is known for a long time that Lagrangian submanifolds provides a prototype for

topological A-branes [13]. The notion of graded Lagrangian submanifolds, originally due

to Kontsevich [7] and later elaborated and generalized by Seidel [10], is a refinement of

ordinary Lagrangian submanifolds that turns out to be particularly significant physically

as well.
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There is an important modification to this story. It was noticed awhile ago that there

might be non-Lagrangian submanifolds that may serve as A-type branes [9]. However,

the non-Lagrangian case had not received much attention until they were re-investigated

carefully by Kapustin and Orlov [4]. It was found by these authors that, at the classical

level, an important class of non-Lagrangian A-type boundary conditions are provided by

certain coisotropic submanifolds carrying non-trivial line bundles, which we refer to as

coisotropic branes. This finding suggests that the category of A-branes should be a suitable

enlargement of the derived Fukaya category, with the coisotropic branes mentioned above

providing primary candidates for the additional objects.

For a coisotropic brane to be a true topological A-brane, and thus an acceptable object

in whatever extension of the Fukaya category, an additional anomaly-free condition must

be satisfied. In the Lagrangian case, such an anomaly-free condition, analyzed first by

Hori, turns out to be precisely that the Lagrangian submanifold be gradable in the sense of

Kontsevich [6]. This is a satisfactory result since it confirms the long-standing belief that

the objects in the derived Fukaya category can indeed be regarded as topological A-branes.

The anomaly-free condition for the coisotropic branes was not known previously, but it is

natural to expect it to be associated with certain gradability condition by analogy with

the Lagrangian case. In a recent paper [3], a proposal for a possible definition of graded

coisotropic branes is put forward based on a study of stability of A-type supersymmetric

D-branes, and it is conjectured there that the gradability condition is the same as the

anomaly-free condition for a coisotropic brane. It is the main objective of this paper to

directly derive the anomaly-free condition for coisotropic branes, and our results prove this

conjecture affirmatively.

This paper is organized as follows. In the next section, we summarize the essential geo-

metric properties of coisotropic branes, and review the definition of the generalized Maslov

class and the corresponding notion of graded coisotropic branes. In section 3, we derive

the anomaly-free condition for coisotropic branes and relate it to the generalized Maslov

class. In section 4, we briefly comment on a different grading for coisotropic submanifolds

introduced recently by Oh [8].

2. Coisotropic branes and generalized Maslov class

In this section we review some basic facts about the geometry of coisotropic branes and

their associated generalized Maslov class, based on the discussion in [4, 3]. An N = 2

supersymmetric sigma model with boundary is defined by a map φ : Σ → X from the

worldsheet Σ to a target space X, which we assume to be a Calabi-Yau manifold, i.e. a

compact Kähler manifold with trivial canonical bundle. Denote the Kähler metric by G

and the Kähler form by ω. The bosons of the theory are given by the map φ. The fermions

of the theory are the left movers Ψ+ ∈ Γ(φ∗TX⊗S+) and right movers Ψ− ∈ Γ(φ∗TX⊗S−),

with S± being the spinor bundles on Σ. For our purpose, a D-brane is a triple (Y,L,∇),

where Y a submanifold of X such that φ(∂Σ) ⊂ Y , L a line bundle on Y , and ∇ a unitary

connection on L. Let F be the curvature of L, which is a real 2-form on Y . We will also use

the notation (Y, F ) to refer to the D-brane defined by (Y,L,∇). The boundary condition
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specified by (Y, F ) takes the form of Ψ+ = RΨ−, where R is a bundle map that can be

represented in the following matrix form in a local basis with respect to the orthogonal

decomposition TX |Y ' TY ⊕ NY :

R =

(

−idNY 0

0 (G − F )−1(G + F )|TY

)

.

By definition, a D-brane of type-A is a boundary condition which preserves the sum

of the left-moving N = 2 super-Virasoro and the mirror of the right-moving N = 2 super-

Virasoro. In particular, this implies RtGR = G and RtωR = −ω. In the case of F = 0, it is

first shown by Witten that Y must be a Lagrangian submanifold [13]. The case of non-flat

bundle is determined in [4], whose results we summarize here. The first requirement is

that Y must be a coisotropic submanifold of X. This means that ker ω|Y ≡ TY ω ⊂ TY

is an integrable distribution of constant rank in TY . Let FY ≡ TY/TY ω, and note that

the complex structure on X naturally induces the decomposition FY ' FY 1,0 ⊕ FY 0,1.

The second requirement says that the curvature 2-form F of the line bundle annihilates

TY ω and therefore descends to a section of ∧2FY ∗. Finally, ω−1F |FY defines a transverse

complex structure on FY . A direct consequence of the last condition is that F0,2, the

(0, 2)-part of F , is non-degenerate. It follows easily from these conditions that the complex

dimension of FY must be even.

The analysis of [4] is carried out at the classical level. Quantum mechanically, a

coisotropic brane is a topological A-brane if and only if an additional anomaly-free condition

is satisfied. To explain this fact, recall that the A-model without boundary comes naturally

with a Z-grading, the charge of the axial U(1) current. In particular, the topological

correlators on the sphere preserve this Z-grading, and this fact makes the bulk operator

product algebra into a differential graded algebra. A topological A-brane must preserve

this structure. In other words, it is necessary that the presence of the boundary does not

break the axial R-symmetry. The coisotropic boundary condition found in [4] preserves

the axial R-symmetry at the classical level, although it might induce a quantum anomaly

that spoils the Z-grading of the theory.

As already mentioned in Section 1, a Lagrangian brane is anomaly-free, and hence a

topological A-brane, if and only if its associated Lagrangian submanifold is gradable in the

sense of Kontsevich. For the coisotropic case, it is conjectured that a coisotropic brane

is anomaly-free (and hence is a topological A-brane) if only it is gradable in the sense

of a grading introduced in [3]. Let’s briefly recall the relevant definition proposed in [3]

here. Let Ω be a holomorphic top form on the Calabi-Yau X which is nowhere zero, and let

k ∈ 2Z be the complex dimension of FY . As the (0, 2)-part of F is non-degenerate, Ω∧F k/2

is a nowhere vanishing top form on Y . Therefore one can write Ω ∧ F k/2|Y = c · vol(Y ),

where c : Y → C
× is a function to the punctured complex plane. Its logarithm log c

is well-defined locally if one picks a (location-dependent) branch. However, there is an

obstruction to lifting log c to a single-valued function globally, which is measured by a class

in the Cech cohomology H1(Y, Z). We define this obstruction class to be the generalized

Maslov class of the coisotropic brane (Y, F ) and denote it by µ(Y, F ). A coisotropic brane
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is called gradable if its generalized Maslov class is trivial. A graded coisotropic brane is a

gradable coisotropic brane together with a global lifting of log c, with its Z-grading being

a choice of the branch of log c.

As we will demonstrate in the following, this gradability condition is precisely the

condition that the coisotropic brane be anomaly-free.

3. Anomalies of coisotropic branes

In this section we derive the anomaly-free condition for coisotropic branes. As before,

let X be a Calabi-Yau manifold of complex dimension n, and let (Y, F ) be a coisotropic

brane of real codimension r = n − k. From the discussion in Section 2, k must be an even

integer. Let φ : (Σ, ∂Σ) → (X,Y ) be the map that defines the worldsheet theory. Let

E = φ∗TX1,0 and Ē = φ∗TX0,1 be the pullbacks of the holomorphic and anti-holomorphic

tangent bundles of X, and let K denote the canonical bundle on Σ. After the topological

twisting, the fermions in the A-model are sections of the following bundles on Σ:

ψ+ ∈ Γ(E), ψ− ∈ Γ(Ē), ρ+ ∈ Γ(Ē ⊗ K), ρ− ∈ Γ(E ⊗ K̄).

The Kähler metric on X induces a natural hermitian metric on the pullback bundle φ∗TX ,

which we continue to denote by G. It will be convenient to write everything in a holomor-

phic basis with respect to the decomposition TX ' TX1,0 ⊕TX0,1 for carrying out explicit

computation later. For example, the metric G and the boundary map R can be represented

in the following matrix form under such a basis:

G =

(

0 g

gt 0

)

, R =

(

0 Ra

Rb 0

)

. (3.1)

Explicit expression for R can be found in [3].

The kinetic action of the fermions looks like

√
−1 ·

∫

Σ
G(ρ+,Dz̄ψ+) + G(ρ−,Dzψ−)

where Dz and Dz̄ are covariant derivatives defined by the pullback of the Levi-Civita

connection on TX . Under the axial R-symmetry, ψ± have charge +1 while ρ± have charge

−1. This is a symmetry of the bulk A-model because of the Calabi-Yau condition. The

coisotropic branes discussed in Section 2 preserve the axial R-symmetry at the classical

level.

Any potential anomaly in the axial R-symmetry must come from the zero modes of

the fermions. More specifically, we must compute the following index

# (ψ+, ψ−) zero modes − # (ρ+, ρ−) zero modes

subject to the boundary conditions

ψ+ = Raψ−, ρ+ = Rbρ−.

– 4 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
0

In order to enumerate the zero modes, we use a doubling trick that effectively converts the

problem to an index theorem on a compact Riemann surface. Such doubling methods have

been used in recent studies of Lagrangian boundary conditions in [5, 6]. The basic idea is

to double the worldsheet Σ, and to interpret (ψ+, ψ−) and (ρ+, ρ−) as fields propagating

on the doubled surface. Mathematically, this means that we want to interpret them as

sections of certain complex vector bundle defined on the doubled surface. For simplicity,

we assume ∂Σ ' S1 in the following discussion, although the result of our analysis does

not depend on this fact in any essential way.

Let’s choose a metric on Σ which is a cylindrical product around ∂Σ. Its orientation

reversal, denoted by Σ∗, carries the opposite complex structure and has a metric naturally

induced by that on Σ. Using the metric, one can glue Σ and Σ∗ along ∂Σ = ∂Σ∗, yielding

a compact Riemann surface ΣC. We call ΣC the complex double of Σ. Let σ : Σ∗ → Σ

be the reflection map, and let Ẽ = σ∗Ē be the pullback bundle of Ē. The crucial idea

then is to regard ψ− and ρ− as fields living on Σ∗, as in [6]. The precise meaning of this

is that one identifies ψ− with its pullback section in Ẽ. Similarly, one identifies ρ− with

its pullback section in Ẽ ⊗ K∗, where K∗ is the canonical bundle of Σ∗. In the following,

we shall construct a complex vector bundle EC → ΣC such that the pair (ψ+, ψ−), when

properly patched together by the boundary condition, define a smooth section on it.

Since ∂Σ is non-empty, the pullback bundle φ∗TX is trivial. Fixing a trivialization of

φ∗TX induces canonical trivializations

ϕ : E → Σ × C
n, ϕ′ : Ē → Σ × C

n.

Note that ϕ′ naturally induces a trivialization of Ẽ, which we also denote by ϕ′ by a slight

abuse of notation. We point out that sections of E and Ẽ are trivialized by ϕ and ϕ′ with

respect to conjugate bases of C
n. When one represents ψ+ ∈ Γ(E) and ψ− ∈ Γ(Ẽ) in the

component form

ψ+ = ψi
+ei, ψ− = ψī

−ēi

it is implicit that such a trivialization pair (ϕ,ϕ′) are chosen, with {ei} and {ēi} being

conjugate bases. So is the case when one writes the boundary condition ψ+ = Raψ− in the

matrix form (see (3.1)):

ψi
+ = (Ra)

i
j̄ ψj̄

− . (3.2)

The reason that we elaborate on this seemingly trivial fact is that, for the purpose of

constructing EC, it is essential that one trivializes the bundle over different patches with

respect to the same basis of C
n. This suggests that a more natural trivialization of Ẽ, for

our purpose, is actually the conjugate of ϕ′:

ϕ̄′ : Ẽ → Σ∗ × C
n.

After these preliminary remarks, we are ready to construct EC by, roughly speaking,

gluing Ẽ and E along ∂Σ. Take an open covering {Uα, Uβ} of ΣC with Σ ⊂ Uα and Σ∗ ⊂ Uβ,

such that Uαβ = Uα ∩ Uβ is a tubular neighborhood of ∂Σ. Let’s extend E and Ẽ to Uα

and Uβ respectively. It is tempting to let EC be the vector bundle whose trivializations
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over Uα and Uβ are simply given by ϕα = ϕ and ϕβ = ϕ̄′. This is problematic since it

does not take into consideration of the boundary condition, and one can easily check that

(ψ−, ψ+) do not define a smooth section of the bundle EC constructed this way.

It is not difficult to remedy the problem. Our construction amounts to interpreting

Ra as an endomorphism of Ẽ and the boundary condition (3.2) as a transition function.

To this end, let’s extend Ra ∈ Γ(EndẼ|∂Σ) to Uαβ . Such an extension always exists. By

using a bump function, one can actually extend Ra to the whole of Uβ , such that it is

nowhere degenerate, and it becomes the identity endomorphism outside of a small open

neighborhood of Uαβ . By yet another slight abuse of notation, we use the same symbol Ra

to denote its extension to Uβ .

To complete the construction of EC, we take ϕα = ϕ as before and take ϕβ = ϕ̄′ ◦R−1.

This gives the desired bundle EC, whose transition function with respect to the open cover

{Uα, Uβ} is given by

hαβ = ϕα · ϕ−1
β = ϕ · R · ϕ̄′−1

. (3.3)

In particular, one can check that ψ+ and Raψ− glue smoothly into a single section χ ∈
Γ(EC), with the gluing condition restricted to ∂Σ being precisely the boundary condition

(3.2). Similarly one can show that ρ+ and Rbρ− glue smoothly into a section η ∈ Γ(EC ⊗
KC), with KC being the canonical bundle of ΣC.

It remains to relate the problem of counting zero modes to an index theorem on ΣC.

As E, Ẽ are trivial bundles, their connections are simply endomorphism-valued 1-forms.

Using the invariance property of the index, we can pick any connections on E and Ẽ, as

long as the boundary condition is preserved in a covariant way. From this point of view,

the fermionic action can equivalently be written as, in terms of the global fields χ and η:

√
−1

∫

ΣC

G(η, ∂̄Aχ).

Here ∂̄A is a twisted Dolbeault operator and A is a connection on EC which we might as

well take as

A|Uα = 0, A|Uβ
= h−1

αβdhαβ .

Therefore we have converted the problem of enumerating the difference of the numbers of

(ψ+, ψ−) zero modes and the (ρ+, ρ−) zero modes into calculating the index of a twisted

Dolbeault operator associated with the complex vector bundle EC, which by a well-known

index theorem is given by

ind ∂̄A = c1(EC) + n(1 − gC)

with gC being the genus of the doubled surface ΣC. In the formula above, the second

term on the RHS is a non-anomalous contribution, since it is a topological constant that

does not depend on details of the map φ : (Σ, ∂Σ) → (X,Y ). If nonzero, it simply shifts

the “ghost number” of the vacuum state. The first term, on the other hand, depends on

the map φ explicitly. If nonzero, there is no consistent way to assign a Z-grading to the
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operators of the theory using the axial R charges. Based on earlier discussion, we conclude

that a coisotropic brane (Y, F ) is a topological A-brane if and only if c1(EC) = 0 for any

map φ : (Σ, ∂Σ) → (X,Y ).

Let’s relate the anomaly c1(EC) to the generalized Maslov class defined earlier. The

crucial link is provided by a holomorphic top form Ω that is nowhere vanishing on X. Let

w : ∂Σ → Y be the restriction of φ to ∂Σ. Over w(∂Σ) ⊂ Y , the tangent bundle TX is

trivial for topological reasons. One can then choose a unitary frame on w(∂Σ)

ui =
1√
2

(

ei +
√
−1fi

)

, i = 1, 2, . . . , n

such that {u1, u2, . . . , uk} and their conjugates span FY . In addition, we can assume

{ek+1, . . . , en} span TY ω. With respect to this frame, one has

Ω ∧ F k/2|w(∂Σ) = Ω12...nPf(F0,2) · vol(Y )

up to a normalization constant. Here Ω12...n is the contraction of Ω with u1 ∧ · · · ∧ un, and

Pf(F0,2) is the Pfaffian of the (0, 2)-part of the 2-form F . This shows that Ω12...nPf(F0,2)

is just the function c : Y → C
× appearing in the definition of the generalized Maslov class

of (Y, F ), restricted to w(∂Σ).

Using the pullback map w∗, one obtains a section w∗(u1 ∧ · · · ∧ un) of ∧nE over ∂Σ,

which can be extended to a local section s of the determinant bundle ∧nEC over Uαβ . By

contraction, φ∗Ω provides a trivialization for ∧nEC|Uα , under which the component of s

is simply φ∗Ω12...n. Under the trivialization on the patch Uβ, the same section is mapped

to φ∗
(

Ω∗
12...n/det(Ra)

)

. This gives a concrete realization of the transition function for the

determinant bundle ∧nEC:

det(hαβ) = φ∗

(

Ω12...n

Ω∗
12...n

· det(Ra)

)

.

Restricting to ∂Σ, it defines a function S1 → C
× whose winding number is the first Chern

number c1(EC). As is shown in [3], the determinant of Ra takes the following form

det(Ra) = det(F0,2)/det(g̃ − F1,1)

where g̃ is the restriction of the metric to FY , and F1,1 is the matrix associated with

the (1, 1)-part of F . Since the denominator is real, it does not contribute to the winding

number of det(hαβ). Therefore c1(EC) is twice the winding number of φ∗(Ω12...n ·Pf(F0,2)).

From the discussion in the last paragraph, we conclude that the first Chern number c1(EC),

which measures the anomaly in the axial U(1) current, is given by

c1(EC) = 2〈φ∗µ(Y, F ), α〉

where α is the generator of H1(∂Σ ' S1, Z).

As anticipated, the anomaly-free condition for the axial R-symmetry in the presence

of a coisotropic brane is that the generalized Maslov class of the brane be trivial, i.e. the

coisotropic brane is gradable in the sense of [3].
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4. Discussion

In this concluding section, we would like to comment on a potentially confusing issue con-

cerning different definitions of grading associated with coisotropic submanifolds. Recently,

a definition for graded coisotropic submanifolds is proposed by Oh [8]. We briefly recall

Oh’s definition below. Let X be a symplectic manifold with a compatible (almost) complex

structure J , and let Y ⊂ X be a coisotropic submanifold. The almost complex structure

J naturally decomposes FY ≡ TY/TY ω into FY 1,0 ⊕ FY 0,1. The transverse canonical

bundle KY of the coisotropic submanifold Y is defined to be the determinant bundle of

(FY ∗)1,0. According to Oh’s definition, Y is a gradable coisotropic submanifold if K⊗2
Y is

trivial, and a graded coisotropic submanifold is a gradable coisotropic submanifold with a

global section of K⊗2
Y .

It is not difficult to see the essential differences between Oh’s definition of gradable

coisotropic submanifolds and our definition of gradable coisotropic branes. Most impor-

tantly, Oh’s definition is intrinsic to the almost Kähler structure (X,ω, J), while our def-

inition involves additional structure associated with the gauge field living on Y . Every

coisotropic brane (Y, F ), gradable or not according to our definition, is a graded coisotropic

submanifold in the sense of Oh, with F
k/2
2,0 providing a global section of KY . While Oh’s

definition applies to more general situations1 and is certainly an interesting geometric con-

struction, it is not what one needs for characterizing topological A-branes. Indeed, as

already mentioned in [8], Oh’s definition of graded coisotropic submanifolds is not a gen-

eralization of the notion of graded Lagrangian submanifolds defined by Kontsevich and

Seidel. In fact, it is obvious that every Lagrangian submanifold is gradable in the sense of

Oh. The result of this paper suggests that it is the graded coisotropic brane defined in [3]

that provides a proper generalization of the graded Lagrangian submanifold from the point

of view of both topological field theory and categorical mirror symmetry.
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